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ABSTRACT 
We implement stochastic stresses on dip-slip faults based on a modified version of the 
method of Andrews and Barall (2011) and Andrews and Ma (2016). Specifically, we 
generate a distribution of complex random amplitudes based on a Gaussian distribution. 
We then modify those amplitudes such that the amplitudes associated with longer 
wavelengths are the most prominent. The amplitudes are then filtered to prevent spatial 
aliasing (i.e., incorrect short wavelength amplitudes) and used to generate a shear stress 
distribution for a fault. Such shear stress parameterizations are then used as an initial 
condition for dynamic rupture models, and we implement multiple parameterizations for 
dynamic earthquake models offshore Alaska. This is an expansion of previous work 
involving a potential Mw 9 megathrust earthquake and resulting tsunami near the Alaska 
Peninsula (Ryan et al., 2013). Additionally, we are studying effects on slip distributions 
due to stochastic fault stress with a free surface boundary condition. In particular, such 
parameterizations tend to move slip patches somewhat updip of highly prestressed 
patches, and this likely results from dynamic normal stress perturbations as the rupture 
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travels updip. Lastly, we are interested in the dynamic slip spectrum that is produced as a 
result of these initial shear stress distributions. We find that the resultant slip is much 
smoother than the initial shear stress based on the amplitudes of the wavenumber spectra. 
We plan to feed results from the earthquake models into corresponding tsunami models 
to investigate tsunami generation and local propagation near the Alaska Peninsula. 
 
REPORT 
Background 
Motivated by the 2011 Mw 9 Tohoku-Oki event and potential earthquakes on the 
Alaskan-Aleutian (A-A) Megathrust, Ryan et al. (2013) investigate the effects of realistic 
fault dynamics on slip, free surface deformation, and resulting tsunami formation from a 
Mw 9 megathrust earthquakes offshore Alaska. 
Specifically, they show three scenarios: a spatially-homogenous prestress and frictional 
parameter model, and two models with rate-strengthening-like friction (e.g., Dieterich, 
1992). Results from that study indicate adding frictional-strengthening to a region of the 
fault reduces both average slip and free surface displacement above the strengthening 
zone, with the magnitude of the reductions depending on the strengthening zone location. 
Additionally, corresponding tsunami models show changes in local peak amplitudes and 
beaming patterns for each modeled slip distribution. Given these results, other 
heterogeneous parameterizations, with respect to prestress and friction, still need to be 
examined. Andrews and Barall (2011) and Andrews and Ma (2016) specify a random 
prestress distribution that produces a target rupture length and moment magnitude. In 
those studies, the presumed stress drop tapers at the edges of the fault so that the rupture 
stops in a progressive fashion. A presumed mean stress drop is chosen to produce the 
desired moment magnitude. In addition to heterogeneous stress distributions, a more 
realistic fault geometry (i.e., a changing dip angle with depth) will likely affect the 
rupture dynamics, and this needs to be investigated further in future studies. 
 
Completed Work 
We use the elasto-dynamic finite element method (FEM) of Barall (2009) to model 
earthquake rupture. Generally, such FEM techniques incorporate elasticity, friction, 
conservation of momentum, and material properties. This is an extension of previous 
work by Ryan et al. (2013). In particular, we have completed several offshore Alaska 
models with random shear prestress distributions. The presumed stress drop tapers at the 
along-strike edges and at the downdip edge. The procedure, similar to Andrews and Ma 
(2016), is the following. In general, the procedure involves going from 2-D wavenumber 
space to a 2-D spatial domain via the inverse Fourier transform. First, we generate a 2-D 
set of complex random amplitudes with a mean of 0 and a variance of 1/2 for each real 
and imaginary value (so that the total variance per point, both real and imaginary, is 1): 
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where αkl = a+bi with a and b being real numbers and i being the imaginary unit for this n 
x n square matrix and where k and l are matrix indices. 
 
Since we are dealing with wavenumber space, the structure of the wavenumber modes 
within the above matrix must be clarified. Wavenumbers will hold integer values. The 
first element of the matrix in each dimension (i.e., the top left component of the matrix) 
corresponds to zero wavenumber in that dimension. Wavenumbers increase in value in 
each dimension until the index n/2, after which the wavenumbers are negative and 
increase to −1 at the last element of the matrix (i.e., the bottom right component of the 
matrix). This type of structure comes from classic signal processing procedures. Thus, the 
wavenumber mapping onto α is  
 

 
 
where Mkl = (κh,κd) for wavenumbers in the horizontal h and downdip d dimensions of 
our model fault. This wavenumber mapping should be the same size as our α matrix.  
 
We modify amplitudes α at low wavenumber modes so that the mean value is zero – in 
accordance with our original statistic specification above – and so that the half-
wavelength modes that correspond to the along-strike length of the fault have the largest 
influence on rupture propagation length. Therefore, the mean value α1,1 – corresponding 
to the wavenumber mode M = (0, 0) – is set to 0 + 0i. The next lowest wavenumber 
modes in the horizontal direction are (1, 0) and (−1, 0). These correspond to wavelengths 
that are the same size as the horizontal spatial dimension, and their amplitude values are 
each set to the value −A + 0i. Note that setting amplitudes to a negative real value will 
produce a positive cosine amplitude peak at the center of the spatial domain as well as a 
negative peak on each side via the inverse Fourier transform.  
 
Our fault is approximately twice as large in the horizontal (i.e., along-strike) direction 
than in the downdip direction, and we must remove the lowest wavenumbers from the 
downdip dimension that are nonphysical (i.e., downdip wavelengths that are larger than 
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the downdip fault dimension) by setting them equal to zero. Therefore, we set the 
amplitudes of wavenumber modes (0, ±1), (0, ±2), (±1, ±1), and (±1, ±2) to zero. Note 
that we need to map these modes onto α properly. We have apparently modified the 
statistics of our amplitude distribution at 14 modes. We have already made sure that the 
mean value is zero. The average variance of the modified modes is 2A2/14 (the sum of 
the squares of the amplitudes divided by the sample size), so we can ensure an average 
variance of 1 by setting 2A2 = 14, or A = √7. Now the statistics are consistent again. 
 
A self-affine function has a 2-D Fourier transform that is proportional to the spectrum 
κ−(H+1) (Mandelbrot, 1977) where κ is the wavenumber and H is the Hurst exponent. For 
self similarity, we take H = 0. In this 2-D case, M = (κh, κd) with κ = (κh

2 + κd
2)1/2. 

Therefore we have the 2-D Fourier transform being proportional to κ−(H+1) = (κh
2 + 

κd
2)−(H+1)/2. With H = 0 our wavenumber spectrum is  

 

 
 
Of course the first entry above is undefined, but we can replace that entry with a 
somewhat arbitrary value (e.g., a value of 1) for the following computations since we 
have already assigned the amplitude of that entry to zero. We multiply our respective 
amplitudes α by our desired spectrum to get α · S. Note that the first entry that results 
from this multiplication should be zero, since we are multiplying by zero (the lowest 
wavenumber mode in α was set to zero). We also apply a high wavenumber cutoff filter 
to reduce aliasing (incorrect high wavenumber modes resulting from the inverse Fourier 
transform). The Nyquist wavenumber is κ = (κh

2 + κd
2)1/2 = n/2 where n is the size of our 

matrices in each dimension. One simple Butterworth filter is √(1/1+(κ2 /κcut
2 )4) where 

κcut is the cutoff wavenumber and is set to n/4 or half of the Nyquist wavenumber in this 
case. In matrix form, the filter is  
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Accounting for the specified spectrum and filter, the modified amplitude matrix β = α · S 
· F. We take the inverse Fourier transform of β and divide through by 2A to normalize the 
function by the sum of the absolute values of the lowest nonzero horizontal modes. This 
results in a random self-similar 2-D function w(x,d) = (1/2A)F−1(β), where x is the along-
strike coordinate and d is the downdip coordinate, with an amplitude envelope 
determined by those lowest nonzero horizontal modes. We use the real part of w, 
although we could have equally used the imaginary part instead (note that this would 
have required setting the imaginary amplitudes at the lowest nonzero modes to −A). Our 
target along-strike rupture length is about 358 km, and the size of each matrix above is 
chosen to be n = 360. The single-wavelength modes (i.e., (±1,0)) have half wavelengths 
characterized by n/2 = 180 points so we choose a grid interval of 2 km (i.e., 180 nodes 
correspond to 358 km). Note that we need to consider half wavelengths since the aim is 
to taper the stress envelope to zero at the fault edges. The downdip length of the modeled 
fault is about 206 km. Therefore, we use a fault grid from w that contains the middle 180 
points along the x-dimension and the top 104 points in the d-dimension. Since we have 
filtered the amplitudes at half of the Nyquist wavenumber (or double the Nyquist 
wavelength) we could suitably interpolate onto grid intervals up to 4 km. However, we 
use a grid interval of 2 km.  

In order to implement a tapered stress drop at the most downdip extent of the fault, we 
use the downdip-conditioning function C(d) = 1/[1+(d/d0)4] where d is the distance 
downdip and d0 is a constant used to alter the stress drop distribution downdip. Now, the 
shear prestress function is parameterized by τ0 =[µk +γw(x,d)]C(d)σ0 where γ is a variable 
that scales w, µk is the kinetic (or dynamic) friction coefficient, and σ0 is the normal 
prestress. Note that the shear prestress decreases as d increases due to the downdip-
conditioning function. We set γ = 0.2000 and d0 = 143.9 km for this study. The static 
friction coefficient, µs, is parameterized by µs =max{0.5630,1.01·(τ0/σ0)} so that 
nucleation only occurs on a specified zone of the fault. The material properties and model 
parameters are listed in Table 1.  
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Figures 1 through 4 show four random shear prestress distributions using the process 
described above. Figure 5 shows the final slip distribution that results from dynamic 
rupture process and from the prestress distribution shown in Figure 4. Figure 6 shows the 
fault slip and fault shear stress spectra corresponding to Figures 4 and 5. We find that the 
slip spectra consists of relatively lower amplitude short wavelength (large wavenumber) 
components when compared to the initial shear stress spectra. However, the slip 
distribution does qualitatively resemble the initial shear stress distribution in that the 
main slip patches are near the regions of higher initial shear stress. We also note that the 
slip patches are shifted somewhat updip of the high initial shear stress patches. This is 
likely due to the free surface boundary condition - dynamic perturbations in stress 
causing relatively larger dynamic stress drop that is amplified as rupture travels updip 
along a thrust fault (Oglesby et al., 1998).  
 

Table 1: Material properties and model parameters. 
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Figure 1: Randomized shear prestress distribution. 
 

 
Figure 2: Randomized shear prestress distribution.  
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Figure 3: Randomized shear prestress distribution. 
 

 
Figure 4: Randomized shear prestress distribution.  
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Figure 5: The shear prestress distribution from Figure 4 is used to dynamically model rupture. 
The resultant slip distribution is “smoother” than the initial shear stress distribution, but does 
show a heterogeneous pattern that qualitatively resembles the initial shear stress distribution. 
Further work is needed to assess wider-ranging impacts from a suite of random initial shear 
stress distributions.  
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Figure 6: Fault slip and initial shear stress spectra. Using the example from Figures 4 and 5, the resultant 
slip distribution is smoother than the initial shear stress distribution, but does show a heterogeneous 
pattern that qualitatively resembles the initial shear stress distribution. The wavenumber spectra for the 
slip distribution is localized to relatively lower wavenumbers (i.e., larger wavelength components) than 
the corresponding spectra of initial shear stress.  
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